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Abstract

Rotation is typically assumed to induce strictly symmetric rotational splitting into the rotational multiplets of pure
p- and g-modes. However, for evolved stars exhibiting mixed modes, avoided crossings between different multiplet
components are known to yield asymmetric rotational splitting, in particular for near-degenerate mixed-mode pairs,
where notional pure p-modes are fortuitously in resonance with pure g-modes. These near-degeneracy effects have
been described in subgiants, but their consequences for the characterization of internal rotation in red giants have
not previously been investigated in detail, in part owing to theoretical intractability. We employ new developments
in the analytic theory of mixed-mode coupling to study these near-resonance phenomena. In the vicinity of the
most p-dominated mixed modes, the near-degenerate intrinsic asymmetry from pure rotational splitting increases
dramatically over the course of stellar evolution, and it depends strongly on the mode-mixing fraction ζ. We also
find that a linear treatment of rotation remains viable for describing the underlying p- and g-modes, even when it
does not for the resulting mixed modes undergoing these avoided crossings. We explore observational
consequences for potential measurements of asymmetric mixed-mode splitting, which has been proposed as a
magnetic-field diagnostic. Finally, we propose improved measurement techniques for rotational characterization,
exploiting the linearity of rotational effects on the underlying p/g-modes, while still accounting for these mixed-
mode coupling effects.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Computational methods (1965); Theoretical
techniques (2093); Stellar rotation (1629); Stellar magnetic fields (1610)

1. Introduction

Rotation is fundamental to many phenomena in stellar
astrophysics. Observationally, rotation alters the surface
characteristics of stars, producing both spectroscopic jitter
and photometric variability (e.g., Santos et al. 2021). On longer
timescales, stellar rotation both generates and is strongly
modified by the magnetic fields that produce stellar activity
cycles and which vary over their courses (e.g., Moss &
Smith 1981; Loi 2021). Further into the stellar interior, even
slow rotation also induces chemical mixing, and therefore it is
known to be needed both for deducing the age scale of
evolutionary calculations (as in Skumanich 1972) as well as for
consistency with the observed chemical abundances of evolved
stars (e.g., Pinsonneault et al. 1992). Despite its relative
importance in all of these processes, the evolution of rotation
off the main sequence remains yet to be fully understood (e.g.,
Aerts et al. 2019).

As a crucial rung in the methodological ladder undergirding
such understanding, asteroseismology permits precise measure-
ments of these rotational dynamics in stellar interiors. In
nonrotating stars, the oscillation frequencies for nonradial
modes of identical degree l but different azimuthal order m are
degenerate. For sufficiently slow rotation rates, the degeneracy
between different m orders is lifted, producing a multiplet
whose mode frequencies are split symmetrically around the

zonal mode frequency. Ignoring latitudinal dependences, to
first order in perturbation analysis, this splitting is given as

òw w dw b- º ~ W( ) ( ) ( )m r K r rd , 1nlm nl nl nl,0 rot

where Knl is an appropriate unimodular rotational kernel. This
expression emerges from perturbation analysis of the quadratic
Hermitian eigenvalue problem (QHEP; Lynden-Bell & Ostri-
ker 1967)

xw w+ + =( ) ( )   0, 22

where  is the nonrotating wave evolution operator, ξ is the
Lagrangian displacement eigenfunction with eigenvalue ω, and
 is the standard inner product. The quantities in Equation (1)
are derived from the diagonal matrix elements (i.e., leading-
order perturbation) of the Hermitian rotation operator ,
assumed to be heuristically small. Techniques built upon this
perturbative construction (Hansen et al. 1977; Gough 1981;
Duvall et al. 1984) have been employed to great effect in
studying the rotational dynamics of the Sun (Howe 2009; Basu
& Antia 2019, etc.) as well as, more generally, main-sequence
stars exhibiting solar-like oscillations (Schunker et al.
2016a, 2016b; Bazot et al. 2019, etc.).
Expressions of this kind have also been applied to evolved

stars, and specifically to subgiants and first-ascent red giants
(e.g., Deheuvels et al. 2012; Mosser et al. 2012; Triana et al.
2017; Di Mauro et al. 2018; Gehan et al. 2018). Such stars
possess an interior g-mode cavity coupled evanescently to an
exterior p-mode cavity (Unno et al. 1989; Ong et al. 2021b).
Consequently, they exhibit mixed modes, which take on both
p-like and g-like character in different parts of the star. Ignoring
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rotation, the evolution of mixed-mode frequencies is well-
approximated by those of pure p- and g-modes, except where
they come into resonance, at which points their frequencies
exhibit avoided crossings over the course of stellar evolution
(e.g., Deheuvels & Michel 2010; Bedding 2012), due to the
coupling between the two cavities. These avoided crossings
notwithstanding, the rotational splittings of these mixed modes
are nonetheless often assumed to be well-described by
expressions of the form of Equation (1). Over the course of
their post-main-sequence evolution, the radiative cores of these
stars shrink, and their envelopes expand simultaneously,
resulting in significant radial differential rotation were angular
momentum to be conserved. Phenomenologically, this has been
approximated using a two-zone model of radial differential
rotation (e.g., Klion & Quataert 2017), where the core and
envelope are assumed to rotate as solid bodies, but at separate
rates. Applied to this scenario, Equation (1) suggests that the
rotational splitting width of these mixed modes may be
approximated as linear combinations of some notional core
and envelope rotational rates:

dw z b z b~ W + - W( ( ) ) ( )m 1 , 3i i imixed, core core env env

where ζi is a mixing fraction associated with the ith mixed
mode, which is close to 1 for a g-dominated mode and close to
0 for a p-like one.

In general, however, first-order perturbation theory may not
correctly describe mixed-mode rotational splittings. In part-
icular, Deheuvels et al. (2017, hereafter Dh17) demonstrate
asymmetric rotational splitting in subgiants (Δν∼ 30 μHz) to
emerge from both analytic considerations and explicit fre-
quency calculations for a series of stellar models. This
phenomenon arises when the rotational splitting is comparable
in magnitude to the mode coupling strength, in which case the
differential mode bumping experienced by the different
azimuthal components of near-degenerate mixed-mode multi-
plets, where each multiplet component executes an avoided
crossing at a slightly different age, results in an effective
asymmetric splitting. Dh17 also note that, in these subgiants,
the coupling strengths for dipole modes are so strong that the
asymmetry in the dipole multiplet splitting ceases to be a
concern; they consequently limit their attention to quadrupole
modes. However, the mixed-mode coupling strengths are
known to decrease rapidly as a star ascends the red giant
branch. Dipole modes in more evolved red giants are
consequently much more susceptible to level-crossing-induced
multiplet asymmetry for on-resonance p/g-mode pairs. At the
same time, the approximate nonperturbative construction
of Dh17, which considers only the case of two interacting
modes, was developed specifically to suit the restricted scope
of subgiants and young red giants, where individual avoided
crossings can be identified and treated in isolation. The relative
density of g-modes to p-modes increases dramatically with
evolution, however, in which case analysis of this phenomenon
ceases to be tractable by reduction to the two-mode system.
Closed-form analytic solutions of the kind considered in Dh17
become impossible in this regime, and so far it has only been
examined by way of brute-force numerical solutions (e.g.,
Ouazzani et al. 2013). For these reasons, Dh17 defer a detailed
analysis of these near-degeneracy effects in more evolved red
giants to a later work. Our aim in this work is to fill this lacuna.

We will show that, in general, the validity of first-order
expressions like Equation (3) strongly depends on the choice of

basis functions used to describe the Lagrangian fluid displace-
ments, ξ, of these oscillations. While they admit a natural
description as the orthogonal eigenfunctions generated by 
and , mixed modes are also well-described as linear
combinations of purely p-like “π-modes” and purely g-like
“γ-modes,” in the sense of Aizenman et al. (1977) and Ong &
Basu (2020, hereafter OB20). These numerical π- and γ-modes
serve to approximate the notional pure p- and g-modes
underlying these avoided crossings. Heuristically, asymmetry
in the rotational splitting is the “local” difference in the
frequency perturbation owing to mode coupling, across a
frequency range set by the size of the rotational splitting.
Accordingly, this asymmetry is a second-order effect, which
cannot be described by first-order perturbation analysis. So too,
however, is the coupling between the two mode cavities that
gives rise to these avoided crossings in the first place. We show
in particular that the rotationally split π- and γ-mode multiplets
are separately well-described by the symmetric splitting
predicted by first-order perturbation analysis, even if the
coupled mixed mode multiplets may not be.
These asymmetric splittings also present significant metho-

dological difficulties, in addition to these conceptual ones. Both
the operators  and  of Equation (2) are diagonal by
definition in the natural basis of mixed-mode eigenfunctions.
However, Dh17 show that these avoided crossings, which yield
asymmetric rotational splittings in the first place, mathemati-
cally require nonzero matrix elements off the diagonal in this
eigenvalue problem; these must necessarily be attributed to the
rotation operator. Asymmetric splittings are thus ipso facto
incompatible with the purely diagonal rotation matrices that are
ordinarily assumed. As we will see, existing asymptotic
approximations to asymmetric splitting (Mosser et al. 2015,
building on Goupil el al. 2013) do not return correct
expressions for these off-diagonal elements. Ultimately, more
sophisticated techniques for dealing with stellar rotation
(e.g., rotational inversions, as attempted for mixed modes in
Ahlborn et al. 2020, Fellay et al. 2021, and Ahlborn et al. 2022)
also rely on this diagonal property of these rotational matrices.
The validity of inversion techniques when this assumption fails
has hitherto not been well-examined, and in fact has come into
question of late (e.g., Bellinger et al. 2021). Conversely, the
recovery of a set of basis functions for which the approximation
of diagonality holds well will be necessary if any attempt at
rotational inversion using mixed modes is to be well-posed.
In this work, we make use of the new analytic developments

described in OB20 to examine these near-degeneracy effects in
the context of evolved red giants, where the individual avoided
crossings are not easily described by reduction to the two-state
system. In particular, the description of Dh17 was limited to the
natural basis of mixed-mode eigenfunctions. Insight into how
rotational splitting related to mode coupling was obtained
implicitly, by truncating the domains of integral expressions of
the same kind as Equation (1) ad hoc. Such an approach
implicitly assumes that exactly one notional p-mode couples to
exactly one notional g-mode, and does not easily generalize to
more general configurations, such as the many-to-one mode
coupling seen in the mixed dipole modes of evolved red giants.
We approximate these notional pure modes by performing
calculations in the basis of isolated π- and γ-modes, supplying
the elements of the coupling matrices in Equation (2) with
direct reference to stellar structure by way of the integral
expressions in OB20 and Ong et al. (2021b). In this manner, we
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render the many-mode problem tractable, both analytically and
numerically, without resorting to brute-force techniques; this
also accounts for nonlocal coupling, unlike other constructions
using a mixing function ζ. In Section 2, we describe the linear-
algebraic construction used for subsequent calculations, present
some analytic limits on the asymmetry in the rotational splitting
from various considerations, and compare these to existing
expressions in the literature. In Section 3, we present numerical
results from applying this construction to evolutionary models
of red giants, and we consider extensions to currently used
techniques in Section 4. We summarize our findings in
Section 5.

2. Algebraic Construction

We formalize our intuition that the rotation operator
appearing in Equation (2) is weak by formulating this QHEP
as a perturbation to the standard Hermitian eigenvalue problem:

xw lw l l+ + + + =( ( )) ( )     0, 42 2 3

where λ ä [0, 1], which reduces to the usual Hermitian
eigenvalue problem in the nonrotating case as λ→ 0. The
power of λ assigned to each operator is chosen to coincide with
the highest power of m on which it depends, which we will find
useful later. While typically only the first-order term  is
considered in analyses of rotational splitting, a complete
accounting of rotational effects should in principle also include
the further perturbation  to the wave operator, which accounts
for both dynamical and structural effects. The former results
from centrifugal forces in the corotating frame, while the latter
is a consequence of rotation also deforming the stellar structure
with respect to its nonrotating configuration. Because both
phenomena are axially symmetric, their effects on the mode
frequencies are even in m (thereby providing a further
asymmetric component in the rotational splitting). However,
these only enter into the wave equation to second order in Ω

(see Aerts et al. 2010). We will consider only second-order
dynamical effects for the purposes of comparison. As we will
show, the omission of higher-order structural effects does not
materially change our conclusions.

We relate these operators to matrices by taking inner
products with respect to some set of basis wavefunctions. wave
functions. In general, these wavefunctions have radial,
poloidal, and toroidal components, and after separation of
variables, they may be written in slowly rotating stars as linear
combinations of vector spherical harmonics (Arfken et al.
2011) as

x x x xY F= + + ( )Y . 5r l
m

t l
m

h l
m

We assume these basis functions to be derived from standard
methods (e.g., they may be the eigenfunctions obtained by
solving Equation (4) with λ→ 0). For a differential operator,
there is a corresponding matrix Q associated with this set of
basis functions. We may find the elements of this matrix by
taking integrals over the equilibrium structure as

òx x x x= á ñ = · [ ] ( ) *Q m, d , 6ij i j i j

where the basis functions themselves are assumed to be
normalized as x x= á ñ =D , 1;ii i i we make no assumption of
orthogonality, instead leaving this information to be described

by the matrix D. Where needed, we will distinguish between
these matrices as evaluated against different sets of basis
functions using superscripts denoting which basis set has been
used. When enough of these matrix elements have been
evaluated, the eigenvalues ω of Equation (4) may be well-
approximated by solving the corresponding matrix equation:

w lw l l+ + + + =( ( )) ( )D R L V c 0, 72 2 3

where the eigenvectors c specify linear combinations of these
basis vectors. Explicit expressions for L and D were developed
in in OB20 (e.g., their Equations (31), (39), (40)) and Ong et al.
(2021b). We now focus on the perturbing matrices R and V.

2.1. Rotation Matrices and Integral Kernels

The primary contribution to the rotational splitting comes
from the operator , obtained by a combination of the term in
the momentum equation corresponding to the Coriolis force,

rW= - ´ ( )f v2 , 8cor

and a change of coordinates from the corotating to the inertial
reference frame. The matrix elements of this operator are given
by a generalization of the usual expression (e.g., Aerts et al.
2010):

ò

ò

x x

r x x

x x x x x x

b

á ñ º

= W + + -

´ - -

º W

( ) ( [ ( ) ]

)

( ) ( )

( )

 R

m r r r l l

m r r K r

,

2 d 1 1

2 d ,

9

i j ij

r i r j

t i t j r i t j t i r j

ij ij

2
0 , ,

, , , , , ,

where the kernel Kij is defined to satisfy ∫dr Kij(r)= 1, such
that for uniform rotation we have Rij= 2mβijΩ. It is trivial to
verify that the diagonal entries of the matrix R are twice the
right-hand side of Equation (1).
We also compute the dynamical frequency shifts induced by

the centrifugal force in the corotating reference frame, which is
known to scale as Ω2 (see Gough & Thompson 1990; Kjeldsen
et al. 1998). Following Lynden-Bell & Ostriker (1967), the
wave operator  is subjected to a small perturbation as

l+ 2 , where

x x x x

x x x x x x

W W

W W W W

=- ´ ´

= ´ ´ = W -

· · ( )

( ) · ( ) · ( · )( · )
( )



10

i j i j

i j i j i j
2

Integrating over spherical harmonics yields a kernel integral of
the form

ò

ò

x x r x x

x x

x x x x

g

á ñ º = W -

+ - - - +

- +

º W

⎛
⎝

⎡
⎣

⎤
⎦

( ) · [ ]

( )( )

( )

( ) ( )

( )

 V r r r Q

L L Q m

Q

r r J r

, d
2

3
1

2

3
3 1

d ,

11

i j ij r i r j lm

h i h j lm

lm r i h j h i r j

m ij m ij

2
0

2
, , 2

, ,
2 2

2
2

2 , , , ,

,
2

,

3
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where the constants γm,ij and kernels Jm,ij are defined
analogously to β and K for the first-order rotational splittings:
for uniform rotation, we have Vij= γm,ijΩ

2. Here, we have used
a compact notation for the integral of three spherical harmonics
(following Gough & Thompson 1990) as

ò

ò
= =

+ -
- +

-

-

( )[ ( )]

[ ( )]

( )
( )( )

( )

Q
P x P x x

P x x
Q

l l m

l l

d

d
;

1 3

2 1 2 3
.

12

lmn
n l

m

l
m

lm
1

1 2

1

1 2
2

2

The omission of structural effects enters into this term.
Accounting for them fully would change the precise values of
γij,m and the structure of the integral kernels J, but does not
otherwise substantively modify our subsequent discussion.

2.2. Perturbation Analysis for Mixed Modes

With these definitions in hand, we are now in a position to
examine the properties of the rotational splitting in more detail.
Supposing that we have numerical access to these matrix
elements in the natural basis of mixed-mode eigenfunctions, we
may extend the first-order expression, Equation (1), to include
higher-order terms in perturbation theory. We adopt the usual
procedure (e.g., Landau & Lifshitz 1965) of expanding the
perturbed eigenvalues and eigenfunctions of Equation (4) as an
asymptotic series in powers of λ:

x x x x
w l w lw l w

l l l
= + + +

= + + +

( )
( ) ( )

...

... 13
i i i i

i i i i

,0 ,1
2

,2

,0 ,1
2

,2

Inserting these expressions into Equation (4) and grouping
terms by powers of λ yields at last that

å

w l w
l

l
w

w
w w

l

= +

+ - + +
-

+

¹

⎛

⎝
⎜

⎞

⎠
⎟

( )

∣ ∣

( ) ( )

R

V R
R

2

2

1

4

, 14

i i ii

i
ii ii i

j i

ij

i j

,0

2

,0

2
,0

2
2

,0
2

,0
2

3

while the eigenfunctions themselves are also perturbed as

åx x xl lw
w w

l= -
-

+
¹

( ) ( ) ( )
R

. 15i i i
j i

ji

i j
j,0 ,0

,0
2

,0
2 ,0

2

Given that the rotation matrix elements, specified by
Equation (9), are all odd in m, and those for second-order
effects, Equation (11), are even in m, the frequencies of the
prograde and retrograde components of the multiplet,
ωm=±l(λ), may be approximately computed by changing the
sign of λ rather than that of m: ω±(λ)∼ ω+(± λ). We can use
this property to greatly simplify the dimensionless asymmetry
parameter defined in Dh17:

y
w w w

w w
=

+ -
-

+ -

+ -
( )2

. 160

Comparing Equation (16) with Equations (13) and (14) gives
us the approximate expression

y l
w
w

l w
l

w
l

l~ ~
¶
¶

¶
¶

+
l

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
2

, 17i
i

i

i i,2

,1

2

2
0

3

which we will use extensively in our following calculations.
Equation (17) makes explicit the fact that asymmetric splitting
arises from second- and higher-order effects. Finally, we will
also characterize the systematic error between the true width of
the rotational splitting and that predicted from the first-order
expression, ωi,1. We define a relative error parameter:

dw
w

w w
w

º =
-

-+ - ( )
2

1. 18i
i i

i

rot

rot

, ,

,1

Inserting Equation (13) into Equation (18) yields

l
w
w

l w
l

w
l

l~ ~
¶
¶

¶
¶

+
l

⎜ ⎟
⎛
⎝

⎞
⎠!

( ) ( ) 
3

; 19i
i

i

i i2 ,3

,1

2 3

3
0

4

that is to say, changes to the widths of the rotational multiplets
(ignoring asymmetry) only occur to third and higher order in
perturbation theory.
It is readily apparent that Equation (1) follows from

truncating Equation (14) to first order in λ. In general, the
higher-order terms in this expansion are potentially dominated
by two different kinds of expressions. If the matrices R and V
are diagonally dominated, then the rotational splitting may be
approximated solely in terms of these diagonal elements.
Because the asymptotic expansion Equation (14) is usually
assumed to converge, the multiplet widths are likewise usually
assumed to be very well-approximated by the diagonal
elements of the rotation matrices. Conversely, if the off-
diagonal elements cannot be neglected, then pairs of modes
close to resonance will have their higher-order terms dominated
by powers of sums over resonance factors,

w wå -¹ ∣ ∣ ( )/Ri j ij i j
2

,0
2

,0
2 . In the presence of near-degenerate

resonant mode pairs, this asymptotic expansion in fact blows
up, and we should likewise expect these higher-order effects to
become significant near an avoided crossing. Both of these
limiting cases yield limiting values of ψ and ò for different
sources of asymmetry in the rotational splitting, which we will
examine separately in the next few subsections.
Finally, while accidental degeneracy between modes of the

same l and m is not possible in the case of mixed modes (so that
these resonance factors never truly become singular), existing
analytic treatments of accidental degeneracy may still be
approximately applied to sets of mixed modes that are merely
near degeneracy. We provide a sketch of this procedure for
illustrative purposes. Suppose that we may identify a subspace
Dk spanned by modes that are near-degenerate (e.g., by the
near-degeneracy criterion of Lavely & Ritzwoller 1992) at
nonrotating frequency ωk,0. Rather than using the natural
mixed-mode basis functions within this subspace, the pertur-
bative expansion is performed instead with respect to linear
combinations of mixed modes, ηi=∑jcijξj, that diagonalize the
perturbation (in this case, rotation) operator as restricted to
within this subspace. Thus, h= ({ })D spank i , such that
h h dá ñ µ,i j ij. The perturbative series is then developed as
above, with the sum over resonance factors restricted to modes
outside this subspace. For instance, we will have

åh h xl lw
w w

l= -
-

+
x Ï

( ) ( ) ( )
R

20i i k
j D

ji

k j
j,0 ,0

s.t. ,0
2

,0
2 ,0

2

j k

for the perturbed eigenfunctions. We note that, if the modes
spanning Dk are not actually accidentally degenerate, the wave
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operator  is not diagonal with respect to this basis. We will
return to these properties in our later discussion.

2.3. Bare Modes

We now consider limiting values of the asymmetry
parameter ψ under various configurations of rotation splitting.
Let us first consider the case where the eigenvalues from
Equation (2) are evaluated when the off-diagonal entries are
ignored (i.e., bare modes with no rotational coupling), which is
usually assumed to be permissible in most treatments of
rotational splitting in the literature—this amounts to assuming
that the matrix R is diagonally dominant. For each mode i with
nonrotating frequency ωi,0, the rotationally split mode frequen-
cies can be found as the solutions to the algebraic equation

w w w+ W - + W = ( )mb g2 0, 21ii i m ii
2

,0
2 2

,

where we define bij and gij to be dimensionless quantities such
that Rij= 2mΩbij and Vij=Ω2gij for some effective rotation
rate Ω; for solid-body rotation, bij→ βij and gij→ γij. The
solutions to Equation (21) are

w w

w w w w

= + W - +  W

º + 

∣ ∣ ( )

( )

g m b m b

2 . 22

i m ii ii ii

i i i i

,0
2 2

,
2 2

,0
2

,0 ,2 ,1

On the other hand, the m= 0 mode is also perturbed by the
centrifugal force, yielding

w w= - W ( )g . 23i ii0 ,0
2 2

0,

The asymmetry parameter, Equation (16), can be expanded in
powers of Ω/ω0 to give

y
w w

w
w

~
+ W - + + -

W

~
W - + +

+ W

( )

( )
(( ) ) ( )

g g m b

m b

g g m b

mb2
. 24

i
m ii ii ii

ii

m ii ii ii

ii

,dyn
0
2 2

, 0,
2 2

0

, 0,
2 2

0
0

3

This expression, which we can verify satisfies Equation (24),
serves as an estimate of the amount of asymmetry we expect to
obtain, resulting purely from second-order dynamical effects. It
is small if the condition for slow rotation (Ω= ω) is satisfied.
We note, furthermore, that Equation (22) is even in Ω above
first order, and thus ò, Equation (19), vanishes to all orders in λ:
when the off-diagonal elements of R are neglected, the width of
the splitting is equal to that given by the first-order expression.

2.4. Two-state Avoided Crossing

In the opposite extreme, we may also estimate the amount of
multiplet asymmetry when the rotational splitting is dominated
entirely by near-degeneracy effects (i.e., the resonance factors
in Equation (14)). We consider a single π-mode multiplet
undergoing an avoided crossing with a single γ-mode multiplet
—this is the scenario also considered in Dh17 under the
assumption of two-zone differential rotation, although we treat
it with a substantially different set of analytic tools. In our
subsequent discussion, we will also use this two-zone model of
differential rotation, with an angular frequency of Ωenv in the
envelope, and W = WCcore env in the core. The use of the
isolated π- and γ-modes has the advantage that, because the

isolated eigenfunctions are already limited in physical extent,
the use of Equation (9) without modifications, with respect to a
piecewise-constant function describing Ω(r), already approx-
imates this two-zone model very well without requiring ad hoc
truncation of the integral limits as in Dh17.
We generalize the construction of OB20 to include rotation

matrices, yielding a quadratic eigenvalue problem written out
with respect to the coefficients of the π and γ basis functions:
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where the structural coupling factors α and D, which are the
off-diagonal elements of  and , are specified by overlap
integrals between the π- and γ-mode eigenfunctions:
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Again, we have assumed that the off-diagonal elements of the
rotational matrix may be ignored. Like α and D, they are
expressed as overlap integrals between the π- and γ-modes,
which are small if the two mode cavities are well separated.
However, while α and D enter into the problem independently
of the rotation rate, the off-diagonal elements of the rotation
matrix are not only small from these structural concerns, but are
also multiplied by the additionally small rotation rate, Ωe—and
then only their squares enter into the expressions for the mode
frequencies at second order, per Equation (14). Accordingly,
their effects are of a much higher order of smallness than the
coupling between the mode cavities, or even second-order
rotational effects, and may thus be safely neglected for this
analysis.
The mixed modes themselves are linear combinations of the

π- and γ-modes, whose coefficients are specified by the
eigenvectors c. Solutions to this eigenvalue problem can be
found in closed form from the roots of the characteristic
equation, which is in principle a fourth-order algebraic equation
in ω. In practice, however, these expressions are extremely
unwieldy (consisting of many layers of nested radicals). We
instead solve the approximate problem (as in Dh17)
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with solutions found instead from a quadratic equation in ω2,
and where we have ignored second-order dynamical effects.
Denoting the roots of the characteristic equation by w

2 , the
asymmetry parameters ψ± may then be either calculated fully
using Equation (16), or approximated using Equation (17). We
compare the closed-form quadratic and quartic solutions for ψ,
both evaluated via Equation (16), in Figure 1, for values of
these parameters supplied from a red giant evolutionary model
(which we describe in more detail in the next section). Because
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we find them to be in excellent agreement, we will restrict our
attention to expressions derived from the greatly simplified
quadratic approximation.

We now make use of certain known properties of π- and γ-
modes. Since they behave like pure p- and g-modes, we may
demand βπ∼ 1, βγ∼ 1− 1/l(l+ 1) at low degree. From
Figure 1, we also see that near-degeneracy effects yield large
asymmetries near resonance; accordingly, we consider modes
at resonance, so that ωπ= ωγ= ω. Finally, because we are
considering red giants in particular, we take the limit of weak
coupling between the p- and g-mode cavities: D< α/ω2= 1.
Equation (17) then gives
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In the limit of weak coupling, the first term exhibits the same
behavior as the intrinsic asymmetry from second-order
dynamical effects (as it arises from the convergent part of the
series expansion) and decreases with increasing frequency as
Ωenv/ω; it is small for slow rotation. The second term, however,
is potentially very large, as α/ω2 decreases rapidly with
evolution, and we therefore expect it to dominate close to
resonance. Thus, we have an estimate of the magnitude of the
splitting asymmetry arising from near-resonance effects:
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Finally, we consider ò, the relative systematic error in
measuring the rotational splittings induced by ignoring near-
degeneracy effects, which we evaluate using Equation (19). We
find (setting D→ 0 to simplify an otherwise very cumbersome

expression) that
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Once again, in the limit of weak coupling, the first term (which
goes as wWenv

2 2) is small for slow rotation, while the second
(which is proportional to 1/α) dominates close to resonance.
Our estimate of this error then goes as
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2.5. Matrix Elements

Our preceding discussion has ignored the off-diagonal
elements of the matrix R in some basis: either in the natural
basis of mixed modes, or in the modified basis of the isolated
π- and γ- modes. This property is required in order for the
truncation of Equation (14) to first order in λ to be a good
approximation, an assumption that in turn fundamentally
underpins Equation (1) and other methods built upon it. These
two sets of basis functions are related to each other by some
linear transformation C, as mixed-mode eigenfunctions may be
expressed as linear combinations of π- and γ-modes. Thus, if
Rπγ is the representation of the rotation operator  in the
isolated π- and γ-mode basis, then its corresponding repre-
sentation in the natural mixed-mode basis is given as
Rmixed=CTRπγC.
That we should obtain two quite different expressions for the

multiplet asymmetry, when setting R to be diagonal in each
basis separately, indicates that the structure of C in red giants is
such that Rmixed and Rπγ cannot both be diagonal simulta-
neously. It is easy to demonstrate this explicitly. In these red
giants, the density of γ-modes is much higher than that of the
π-modes, so we expect to see many mixed modes close to
resonance with any given π-mode. Let us consider two such
modes whose m= 0 mode frequencies are both close to that of
the same π-mode. We write their eigenfunctions as

åx x x~ +p p g g ( )c c . 32k k
j

kj j, , ,

These coefficients may be related to the usual asymptotic
mixing function ζk as z ~ å g∣ ∣ck j kj,

2, while z~ -pc 1k k,
2

(following OB20). By assumption, both of these modes are
relatively p-mixed, so ζk is small (and z-1 k is close to 1).
Supposing that Rπγ is approximately diagonal, it follows that
the off-diagonal matrix element of Rmixed for these two modes
is given as
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Because the γ-modes in these red giants are far denser than the
π-modes, we expect the γ-mode cross coupling not to

Figure 1. Asymmetry parameters ψ± as a function of ωγ/ωπ for a dipole
mixed-mode pair, using parameters supplied from a MESA evolutionary model
(Model 1, described later). Values derived using the quadratic approximation of
Deheuvels et al. (2017) are shown with the dashed lines, and are in very good
agreement with the solutions to the quartic equations.
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contribute significantly, so

z z b z z~ - - W +p( )( ) ( ) ( )R m2 1 1 . 34kl k l k l
mixed

env

In principle, a converse argument can be made to show that
Rmixed being diagonal precludes Rπγ from being so.
However, Dh17 have already shown that off-diagonal entries in
Rmixed are required in order to reproduce the observed
asymmetric quadrupole splitting in subgiants. In more evolved
red giants, we expect at least two such dipole mixed modes
with nontrivial off-diagonal elements to exist for every possible
dipole π-mode. The precise number of such mixed modes per
p-mode that cannot be neglected will depend on how ζ changes
with frequency, which in turn depends on the structure of mode
cavities and the strength of the coupling between them.

Let us now compare these expressions with those in earlier
studies of asymmetric splitting. Dh17 provide explicit expres-
sions for these terms in the two-mode, two-zone model. For
two mixed modes in particular, the mixing coefficients in our
construction must satisfy (cπ,1, cγ,1)= (cγ,2, − cπ,2) for
orthogonality. Then Equation (33) yields

z z b b= - W - Wp g( ) ( ) ( )R m2 1 , 3512
mixed

1 1 env core

which reproduces the expression in Dh17 for the off-diagonal
matrix element (their Equation (B.7)). Likewise, for the
diagonal elements, we recover

z b z b= W + - Wg p( ( ) ) ( )R m2 1 , 36ii i i
mixed

core env

which ultimately yields Equation (3). Since the resulting
coupling matrices are identical, we conclude that the construc-
tion in Dh17 is equivalent to ours, and thus also assumes
implicitly that the rotation matrix Rπγ is diagonal in the isolated
π/γ basis. Conversely, however, the constraint on the mixing
coefficients required to produce Equation (35) is only valid for
two interacting modes. Thus, Equation (35) fails in the regime
of many-γ-to-one-π-mode coupling, which is the case for
dipole mixed modes in red giants.

Mosser et al. (2012, 2015, 2018) propose an alternative
construction in this many-to-one regime, in which the coupling
fractions ζ are themselves assumed to admit analytic continua-
tion as a function of mixed-mode frequency, describing an
infinitely dense forest of g-modes. Supposing this to be the
case, their expressions for the rotational splitting (again in the
case of two-zone differential rotation) reduce to requiring that
the rotationally split mixed-mode frequencies satisfy
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in a self-consistent fashion, so that the application of Leibniz’s

theorem permits the leading-order term,
w
l

d

d
, to recover the

diagonal matrix elements of Rmixed, Equation (36). Because
ζ(ω+ δωrot)≠ ζ(ω− δωrot) in general, this construction yields
asymmetric splitting and therefore implies the presence of
nonzero rotation matrix elements off the diagonal. In order to
compare their construction to that presented in this work, we
will now derive expressions for these implied matrix elements.

Applying Equation (17), we obtain that
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We relate these derivatives to the off-diagonal matrix elements
via Equation (14), yielding
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This does not in itself uniquely specify the matrix elements Rij.
Ultimately, this reflects an implicit limitation of the ζ-function
construction: without further analytic continuation (e.g., J. M.
J. Ong & C. Gehan 2022, in preparation), rotational coupling
between modes via off-diagonal matrix elements is tacitly
assumed to be strictly local, for infinitesimally separated modes
in a continuum of possible mode frequencies. As we will see,
this assumption is not consistent with the actual behavior of the
rotational coupling matrices returned from explicit numerical
calculations. This also does not generalize to a discrete set of
frequency eigenvalues in a well-defined manner. For the sake
of argument, however, let us suppose that we may approximate
the derivative in Equation (39) by some kind of finite difference
scheme, where we choose coefficients hij so that

åz
w

z z

w w
¶
¶

~
-

-w w= ¹

( )h . 40
j i

ij
j i

j i
2 2 2

i

Inserting this into Equation (39) then yields
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Even were a canonical choice of hij to exist, expressions of this
kind, irrespective of the precise choice of hij, are clearly not
consistent with the definition of the rotation matrix elements,
i.e., Equation (9). In the two-zone model of differential
rotation, Equation (9) requires that Rij must be proportional
to some linear combination of Wcore and Ωenv, whereas this
expression demands instead that its square be a linear
combination of their squares. Accordingly, this construction
is strictly speaking only valid in the limit of Ωenv→ 0, and
cannot be used as a starting point for generalizing the two-zone
model of differential rotation in a manner consistent with the
usual rotational kernels.
Another, less obvious, limitation of this construction is that

the assumption of a single mixing function ζ is not tenable even
in the two-zone model. In the preceding discussion, we have
assumed that the precise functional form of ζ does not change,
and that it is consistent with what would be obtained for a
nonrotating star. In this two-zone model, however, changing
Ωenv changes the shape of ζ itself, depending on whether
prograde or retrograde modes are being considered (which we
illustrate in Figure 2). The location of each local minimum of ζ
is determined by the location of the π-mode of the appropriate
m after accounting for its rotational perturbation, while the
present construction of Mosser et al. (2012, 2018), etc., makes
no allowances for this. Even if a modified formulation of this
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construction were to exist that resolved the issues above, it thus
would also have to account for the splitting of the π-modes
separately from that of the mixed modes in order to accurately
describe mode splitting for nonzero Ωenv. As such, making
reference to the notional underlying basis of p- and g-modes,
which we approximate with π- and γ-modes, ultimately appears
to be necessary even in the limit of infinitely dense γ-modes.
Corollarily, modes of different m cannot be all straightened
simultaneously on the same “stretched” echelle diagram (as
used in, e.g., Gehan et al. 2018), in the presence of nontrivial
envelope rotation.

In summary, we have shown that our construction, further
assuming that the off-diagonal elements of Rπγ may be
neglected, is fully equivalent to the formulation of Dh17 when
restricted to the two-multiplet two-zone problem, and is also
immediately generalizable to the extended case of many-mode
coupling. We have moreover demonstrated that the implied off-
diagonal matrix elements from the construction of Mosser et al.
(2012), etc., are not only not uniquely defined but are also in
any case inconsistent with the linear property of the matrix
elements of the perturbing rotation operator, Equation (9). Any
similar techniques based on the approximate asymptotic mode-
bumping function ζ also cannot correctly describe the splitting
of mixed modes for nonzero Ωenv, unless the shape of ζ should
itself also be made to depend parametrically on the splitting of
the underlying π-modes.

3. Numerical Results

Thus far, we have not supplied any a priori justification for
neglecting the off-diagonal elements pgRij . To the extent that
they may be neglected for pure p- and g-modes for stars in
other stages of evolution, it seems reasonable that the off-
diagonal elements in the π and γ subspaces may be ignored, as
they separately behave like pure p- and g-modes. Moreover,
given that the π-modes are formally evanescent where the γ-
modes may propagate (and vice versa), we should also expect
their overlap terms in Equation (9) to be negligible. In order to
make more concrete statements about how significant these off-

diagonal elements might actually be, however, we will have no
choice but to resort to explicit numerical calculations. To
illustrate the properties of the above expressions, we evaluate
them with respect to stellar structures specified by evolutionary
models computed using MESA r12778 (Paxton et al.
2011, 2013, 2015, 2018, 2019). We consider models along
these evolutionary tracks from the onset of mode mixing
(starting where n DP < 1max 1 ) to the tip of the red giant branch.
We evaluate Equations (9) and (11) using frequency eigenva-
lues and mode eigenfunctions computed using GYRE (Town-
send & Teitler 2013). These are evaluated both with respect to
the usual basis of mixed modes, as well as with respect to the
π- and γ-modes and their coupling matrices, which we
computed, also using GYRE, according to the prescription of
Ong & Basu (2020).

3.1. Rotational Matrices

For illustrative purposes, we first apply this numerical
construction to a model of a young red giant (Δν= 17.5 μHz)
with mass 1.4M☉, of solar composition and mixing length,
using a notional value of p mW =2 0.5core Hz and
W W » 10core envelope , as in, e.g., Gehan et al. (2018) and
Bugnet et al. (2021). Because we rely heavily on this model for
demonstrative purposes, we will refer to it hereafter as “Model
1.” It is also convenient to describe the configuration of mixed
modes using the number of dipole g-modes per p-mode at nmax,

n n= D DP1
2

1. For Model 1, we have ~ 51 . We show
the structure of the off-diagonal elements of its dipole-mode
rotation matrices (m= l= 1) in Figure 3, scaled by its diagonal
elements in order to produce dimensionless quantities that can
be compared between the two sets of basis functions. In
particular, we see that, while Rmixed plainly exhibits very
significant structure off the diagonal, Rπγ does not; the off-
diagonal elements of the former are an order of magnitude
larger than the latter.
Equation (34) predicts that the off-diagonal elements in these

red giants are dominated by terms proportional to
z z- -( )( )1 1i j , and therefore are largest for pairs of p-

dominated mixed modes. It is precisely this that gives rise to
the plus-shaped structure in the left panel of Figure 3. For these
modes specifically, the rotation matrix is most poorly
approximated as being diagonal. To better quantify this
statement, we define a preconditioned diagonal dominance
discriminant,

å=
¹

∣ ∣
∣ ∣

( )S
R

R R
, 42i

j i

ij

ii jj

such that the rotation matrix is diagonally dominant if Si< 1 for
all modes i. We show these values for the mixed modes, π-
modes, and γ-modes in Figure 4. To permit a fair comparison,
we include the π–γ cross-coupling terms of Rπγ when
evaluating Si for the π-and γ-modes. Nonetheless, we see that
Rπγ is indeed diagonally dominant, while the modes for which
off-diagonal elements of Rmixed can least be neglected are
precisely the most p-dominated mixed modes, whose frequen-
cies are closest to those of the underlying π-modes. Accord-
ingly, neglecting the off-diagonal elements of Rπγ is a far better
approximation than doing so for Rmixed.
These off-diagonal matrix elements of Rmixed introduce

coupling between different mixed modes, as described

Figure 2. Mixing functions ζ for different azimuthal indices m (solid curves of
different colors), computed using inertia ratios with respect to a red giant
evolutionary model (Model 2 of the next section) with nontrivial envelope
rotation. The dashed lines show the locations of the rotationally split π-modes.
The dotted lines connect the inertia ratios of all modes in increasing order of
frequency; the resulting curve does not describe a mixing function ζ of the kind
used by the construction of Mosser et al. (2015) and subsequent works.
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in Dh17, resulting in avoided crossings between modes of the
same m in different multiplets. To build intuition for this, we
show the frequencies of the sectoral quadrupole modes from
the same young red giant model as before (where the
phenomenon is more visually evident), as a function of the
core rotation rate, in Figure 5, maintaining a constant value of
the core-envelope rotational contrast C= 10 throughout. We
see that our construction reproduces the qualitative features
also observed from nonperturbative calculations for mixed-
mode rotational splittings, e.g., as performed in Ouazzani et al.
(2013) and Dh17. In particular, the mixed-mode frequencies,
represented with the solid curves, generate independent
families of avoided crossings for each azimuthal order m,
shown with different colors. We additionally represent
variations in the mixing fraction ζ using the stroke thickness,
with the g-dominated mixed modes shown using thin lines, and
p-dominated ones with thick lines. Away from resonance, the

splittings of the g-dominated mixed modes are well-described
by those of the pure γ-modes, shown with the dotted lines;
likewise, the splittings of the p-dominated mixed modes
approximate those of the pure π-modes, shown with the
dashed lines. It is when these avoided crossings occur—i.e.,
when these families of straight lines cross—that we get
deviations from symmetric rotational splitting. We stress that
these avoided crossings are parameterized with respect to Ω,
rather than evolution as ordinarily considered.
The often-used linear expression for mixed modes,

Equation (3), predicts that rotational splittings for mixed
modes should also yield straight lines on Figure 5 at an
intermediate angle between the pure p- and g-modes, to leading
order in perturbation theory. We can now see that it is the
curvatures of the near-degenerate mixed-mode avoided cross-
ings that require second- and higher-order terms involving the

Figure 3. Scaled off-diagonal elements of the matrix elements Rij with respect to two different sets of basis functions for dipole modes. Matrix elements in the natural
basis of mixed modes are shown in the left panel, and those in the isolated basis of π- and γ-modes are shown in the right panel. Note that both panels use the same
color scale, which is significantly saturated in the left panel in order to show structure in the right panel.

Figure 4. Diagonal-dominance discriminant for the mixed, π, and γ dipole-
mode rotational matrices (including cross-coupling terms) shown in Figure 3.
Modes for which this discriminant exceeds unity, shown with the horizontal
dashed line, are most poorly approximated by a diagonal rotation matrix. The
π-mode frequencies are shown with the vertical dashed lines.

Figure 5. Mixed-mode rotational splittings as a function of Ω, for quadrupole
modes in the same red giant model used for Figure 3. Retrograde sectoral
modes are shown in blue, prograde sectoral modes in orange, and zonal modes
in gray. Mixed modes are shown with solid lines, while the uncoupled p- and g-
modes (and their splittings) are shown with the dashed and dotted lines in the
background, respectively. Note the avoided crossings in the solid lines near
where dotted and dashed lines of the same color cross.
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off-diagonal matrix elements to fully describe. By contrast,
these rotational effects are much simpler to conceptualize with
access to the pure p- and g-modes and the coupling between
them: these isolated pure modes can be seen to trace out the
straight lines in Figure 5, and may then be recombined to yield
mixed modes by effecting the coupling between the two mode
cavities. Importantly, this mode coupling does not have any
dynamical dependence on the rotation rate. Thus, a linear
treatment of rotational effects remains applicable to the pure p-
and g-modes even when it does not for mixed modes.

3.2. Estimates of Asymmetric Splitting

Let us now examine the effects of these avoided crossings on
the sizes and asymmetries of the mixed-mode splittings
themselves. We illustrate this by computing the asymmetry
parameter ψ directly using Equation (16) with respect to only
the sectoral and zonal mode frequencies of Model 1, as
in Dh17, again using a core rotation rate of 0.5 μHz and a core-
envelope contrast of 10. At lower frequencies, Wcore is
comparable to the frequency difference between adjacent g-
like mixed modes. This may cause confusion in identifying
which modes should constitute the multiplet of a given l and n.
In principle, the zonal and sectoral modes should nonetheless
remain distinguishable by way of their relative amplitudes
(with some inclination dependence, as in, e.g., Gizon &
Solanki 2003). Accordingly, we compute ψ in two ways.
Because the quantum numbers of all modes are known a priori,
we are able to present the “true” asymmetry parameter, shown
with orange lines and open circles. Additionally, we show, with
the blue markers and lines, a naive “nearest-neighbor”
construction, which assumes that an unsuspecting observer
will have little choice but to assign the nearest two sectoral
modes to each zonal mode. We show the signed asymmetry
from both constructions in Figure 6, for both dipole and
quadrupole mode frequencies. Superimposed on these values,
we also show three different estimates of the asymmetry in the
multiplet splitting: that arising from the second-order Coriolis
effect alone (dotted–dashed line), that from both the second-
order Coriolis and centrifugal forces combined (Equation (24),
dotted lines), and the limiting value from near-degeneracy

effects (Equation (29), black dashed lines), which can be seen
to serve as an upper bound. To guide the eye, we show the
locations of the π-modes (and thus the most p-dominated
mixed modes) with the vertical dashed lines.
For dipole modes (panel (a)), we see that the size of the

splitting is small enough that there is no confusion between the
two constructions. For the most g-dominated mixed modes, the
splitting asymmetry is also small, and it is well-described
purely by higher-order dynamical effects. While we have
considered only the second-order dynamical effects of rotation
here, the higher-order structural effects of rotation (i.e., changes
to mode frequencies owing to changes to stellar structure
caused by rotation) enter into the wave equation to the same
order in Ω; their effects will therefore be likewise small. In the
vicinity of the more p-dominated mixed modes, however, the
resonant asymmetries induced by avoided crossings clearly
dominate this intrinsic dynamical asymmetry. For the quadru-
pole modes, we see in panel (b) that the width of the rotational
splitting becomes comparable to the spacing of the g-modes,
rendering them susceptible to misidentification with the naive
nearest-neighbor approach, particularly at low frequencies.
Again, asymmetric splitting arises predominantly resonantly in
the most p-dominated mixed modes from avoided crossings
involving the underlying π-modes, and by far exceeds the small
amounts generated by second-order dynamical effects. More-
over, the coupling strength between the p- and g-mode cavities
is much weaker for quadrupole modes than for dipole modes;
this coupling strength appears in the denominator of
Equations (29)–(31). Accordingly, we expect the potential
asymmetric splitting from near-resonance effects to be much
larger for quadrupole modes than for dipole modes, which is
indeed seen to be the case.
We note that this phenomenology, with the unsigned

asymmetry taking maximal values for the most p-dominated
modes, is the converse of that demonstrated with less-evolved
subgiants in Dh17. In that work, asymmetric splitting was
shown to be associated with avoided crossings producing g-
dominated mixed modes, amidst otherwise symmetrically-split
p-modes. However, the intrinsically asymmetric splitting in
both of these cases arises through essentially the same
mechanism, which is perhaps most easily visualized by

Figure 6. Asymmetry parameters ψ for (a) dipole and (b) quadrupole modes, for a MESA evolutionary model near the base of the red giant branch (see text for
complete description). Markers and lines connecting them show the asymmetry in the mode splitting computed using Equation (16), both with respect to the actual
multiplets (orange open circles and lines), as well as for multiplets comprised of the two nearest sectoral modes for each zonal mode (blue markers and lines). Other
curves show various estimates for asymmetric multiplet splitting: we show predictions from only second-order Coriolis effects (dotted–dashed black lines), from
second-order rotational effects including the centrifugal force (dotted lines), and the upper bound on asymmetric splitting from near-degeneracy effects (Equation (29),
black dashed lines). A modified expression for near-degeneracy effects accounting for the dense g-mode spectrum, Equation (44), is shown with the red dashed lines.
The locations of the π-modes are shown with vertical dashed lines, to guide the eye.
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considering the mixing fractions ζ of each of the multiplet
components separately. In the specific case of only core
rotation in red giants, we may combine Equation (17) with the
defining property of ζ in the continuum limit of g-mode
frequencies, ζ∼∂ω/∂ωg (see Equation (37)), to obtain roughly
that
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While this precise chain of reasoning is not generally valid
(following our earlier discussion in Section 2.5), it nonetheless
suffices to motivate a heuristic diagnostic for determining
where asymmetric rotational splittings should be expected to
emerge: it arises where the mixing fractions ζm are significantly
different between components of the same rotational multiplet.
For illustration, we show these quantities in Figure 7 for the
dipole modes of Model 1; despite the roughness of the
assumptions going into Equation (43), we can see that it
produces good visual agreement with the actual intrinsic
asymmetries shown in Figure 6(a).

We now turn our attention to analytic limits on the
asymmetry and systematic error. In both of its panels,
Equation (29) can be seen to serve only as a loose upper
bound, rather than being representatively descriptive of the
typical resonant asymmetries in the neighborhoods of these
avoided crossings. Ultimately, this is because Equation (29) is
derived for the specific case of exactly one π-mode being
fortuitously in resonance with exactly one γ-mode, where both
sets of modes are assumed to be otherwise sparse. In more
evolved red giants, however, the forest of γ-modes near each π-
mode becomes increasingly dense, spaced out at a local
repetition rate of δωγ= 2πν2ΔΠ, where ΔΠ is the character-
istic period spacing of the γ-modes. Consequently, there will
always be at least one γ-mode at most δωγ away from every π-
mode: the resonance factors in the second-order term of
Equation (13) are then bounded from below by terms inversely
proportional to dw w dw~g g22 . Compared to this, Ong et al.
(2021b) show that, conversely, the distance between adjacent
mixed-mode eigenvalues is bounded from below as δω2> 2α

in the two-mode system, which is why Equation (29) is an
upper bound. Accordingly, to match the resonance-dominated
terms of Equation (13), we can modify Equation (29) by
replacing α in the denominator with ω δωγ, to yield
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We show these values with the red dashed lines in Figure 6. For
both sets of modes, Equation (44) is more representative of the
near-degeneracy asymmetric splitting than the upper bound
from Equation (29).
These expressions appear to hold well more generally. We

show in Figure 8 the same quantities when repeating this
exercise with dipole modes in a significantly more evolved red
giant model (Δν= 5 μHz, ~ 301 ) along the same evolu-
tionary track as Model 1, which has evolved to the RGB
luminosity bump (we will refer to this as Model 2). We perform
calculations with the same rotational rates as above, although in
reality we should expect the core-envelope rotational contrast
to intensify over the course of stellar evolution. Nonetheless,
this calculation still serves for our illustrative purposes. As
Gehan et al. (2018) observe, correct identification of rotational
multiplet components becomes increasingly difficult for more
evolved stars. This is borne out in our calculations by the clear
disagreement between asymmetries calculated with the true
mode identification in hand, compared to with the naive
nearest-neighbor construction. At the same time, the coupling
strengths for mixed modes also decrease rapidly over the
course of stellar evolution (Ong et al. 2021b), causing even the
true splitting asymmetry here to be an order of magnitude
larger than that of the dipole modes in Model 1. Again, we see
that Equation (29) serves as a loose upper bound on the
splitting asymmetry, while Equation (44) yields more repre-
sentative predictions. We will thus use Equation (44) for our
discussion in the subsequent sections.
Also of concern, aside from asymmetry per se, are the

possible systematic errors induced in interpreting measure-
ments of the rotational splitting as rotation rates. When near-
degeneracy effects dominate, the first-order expressions in the
two-zone model, Equation (3), may cease to provide a good
approximation of the true widths of the rotational splittings. We

Figure 7. Differences between the mixing fraction ζm of multiplet components
of different azimuthal orders m versus that of the m = 0 multiplet component,
ζ0, shown as a function of the nonrotating mode frequency for the dipole modes
of model 1 (see Figure 6(a)). Vertical dashed lines indicate the locations of the
underlying π-modes.

Figure 8. The same quantities as shown in Figure 6, computed with respect to
dipole modes in a more evolved red giant model (see text for a complete
description).
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show the absolute relative systematic errors in these measure-
ments, Equation (18), in Figure 9, for dipole modes from both
Models 1 and 2. Note that the g-dominated modes exhibit
systematic deviations from the first-order expression as well;
these are of opposite sign to those shown by the p-dominated
modes. We also show the estimates for this relative error in the
two-mode coupling scenario, Equation (31), with the black
dashed lines. It is evident that considerations from two-mode
coupling significantly underpredict the systematic error in the
rotational splitting widths relative to the first-order expression.

Again, we refer to the perturbative expansion, Equation (13),
for guidance as to how Equation (31) may be modified to suit a
dense forest of g-modes. In the limit of degeneracy-dominated
effects, the third-order term in the expansion is dominated by
terms of the form
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Accordingly, in line with the above considerations, we propose
a modified expression,
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which scales appropriately with Ω and ΔΠ, and also retains the
desirable property that this systematic error should vanish
should the core-envelope rotational contrast be fortuitously
equal to βπ/βγ. We show this expression with the red dotted
lines in Figure 9; again, we find that it is generally
representative of the systematic error in the vicinity of the π-
modes.

3.3. Interactions with Other Sources of Asymmetric Splitting

In addition to the structural and dynamical effects that we
have considered above, frequency shifts depending on m can
also result from further violations of spherical symmetry, such
as would arise from latitudinal differential rotation or large-
scale magnetic fields. As the former does not affect the
asymmetry parameter ψ (Aerts et al. 2010), we restrict our
attention to the latter. Bugnet et al. (2021) consider the effects
of an axisymmetric magnetic field localized to the radiative

core of a red giant on the rotationally split mixed-mode
frequencies. Because the magnetic field is localized to the core,
by assumption its effects on the g-dominated mixed modes are
much larger than on the p-dominated ones. They then consider
the interposition of magnetic and rotational effects to first
order, where frequency perturbations are strictly additive. With
respect to this treatment, they find that magnetic fields also
induce much larger rotational asymmetries for g-dominated
mixed modes than for p-dominated mixed modes. However, as
we have seen above, near-degeneracy effects systematically
induce asymmetric splitting in p-dominated mixed modes, and
these arise from nonlinear effects of mode coupling. Here, we
examine how such nonlinearities might affect estimates for the
asymmetric splitting arising from magnetic effects as well.
We assume that the star hosts a stable buried magnetic field

in its radiative interior, resulting from the stabilization of past
dynamo fields (Arlt et al. 2013; Emeriau-Viard & Brun 2017;
Villebrun et al. 2019). Purely toroidal and purely poloidal
magnetic configurations are known to be unstable inside
radiative interiors (e.g., Markey & Tayler 1973; Tayler 1973;
Braithwaite 2006, 2007), but the stability of mixed configura-
tions with both poloidal and toroidal components has been
demonstrated in Tayler (1980). We therefore use such a mixed
poloidal and toroidal magnetic field configuration expressed
analytically by Duez & Mathis (2010) to model a stable fossil
field inside the radiative interior of the star, with its axis of
symmetry aligned with the rotation axis of the star, as done in
Bugnet et al. (2021). We ignore any dynamo action in the
convective envelope, as the resulting magnetic field amplitude
would be too low for its effect on mixed mode frequencies to
be detectable (e.g., Privitera et al. 2016; Perri et al. 2020, for
magnetic cycle amplitudes at the surface of the Sun and red
giants). We set the maximum amplitude of the field at
B0= 1MG for Model 1, as might be typical inside red giants’
radiative interiors (Cantiello et al. 2016) based on the
conservation of the magnetic flux inside the radiative region
since the last convective-core event (for more details about the
conservation of fossil fields, see Bugnet et al. 2021). This field
amplitude is small enough that a first-order perturbation study
can be applied, as in Bugnet et al. (2021).
We accommodate magnetic effects in our construction

perturbatively by modifying the rotational QHEP to include a

Figure 9. Relative error ò in the rotational width δωrot for dipole modes of MESA evolutionary models near (a) the base of the red giant branch and (b) the luminosity
bump (see text for complete description). Blue markers show the relative systematic errors in the rotational width compared to predictions using the first-order
expressions, which are given in the two-zone model by Equation (3). We also show expressions for this error owing to near-degeneracy effects as predicted from two-
mode coupling alone (black dashed lines, Equation (31)), and accounting for the dense forest of g-modes (red dotted lines, Equation (46)). Note that the g-dominated
modes have errors with signs opposite to those of the p-dominated modes.
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further operator describing the action of magnetic fields, as

xw lw l k+ + + + =( ) ( )     0, 472 2

where κ ä [0, 1] is a perturbative expansion parameter (of the
same kind as λ), and the elements of the corresponding matrix
representation M of the operator are given as
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This matrix generalizes the linear expressions in Bugnet et al.
(2021), their Equations (18)–(21), which yield its diagonal
elements. Accordingly, by an argument similar to the one we
have prosecuted above for pure rotation, we can conclude that
the calculations performed in that work are correct only to
leading order in κ. Likewise, we therefore expect any
deviations from these first-order calculations to also be most
significant in the vicinity of the p-dominated mixed modes,
where near-degeneracy effects emerge.

We use Model 1 again to illustrate the differences between
the linear and general approach to mode coupling in the
presence of magnetism. Accordingly, we have two different
sets of asymmetry parameters (evaluated with respect to the
linear and general approach of mode coupling), which we
compare in Figure 10(a). As in Bugnet et al. (2021), we see that
the first-order approach of mode coupling (shown with blue
points and lines) gives much larger values of the asymmetry
parameter for g-dominated mixed modes of than it does for p-
dominated mixed modes, with frequencies near those of the
underlying π-modes. When mode coupling is taken into
account (orange lines and open circles), the multiplet
asymmetries for g-dominated mixed modes are in good
agreement with those returned from the first-order expression.
However, those of the p-dominated mixed modes exhibit
differences from the first-order expressions that are numerically

much larger than the resonant asymmetries resulting from pure
rotation (as in Figure 6(a)). This is especially evident at low
frequencies, where the density of modes is highest. As such,
when diagnosing magnetism inside red giants using the
asymmetry parameter, it is important to limit the study to g-
dominated modes, to avoid false-positive magnetic detections
induced by mode-coupling asymmetries.
In our discussion above, we demonstrated that asymmetric

splitting becomes significant when the mixing fraction ζ differs
significantly between components of the same multiplet. A
similar phenomenon can be identified here: interactions
between mode coupling and the magnetic perturbation are
most significant when the magnetic perturbation induces
differential changes in the mixing fractions ζ as well. We
demonstrate this in Figure 10(b), where we show the changes
to the mixing fraction that can be attributed to the action of the
magnetic field (interacting with mixed-mode coupling). Multi-
plets in Figure 10(a) where the linear and nonlinear
asymmetries diverge most correspond to those in
Figure 10(b) where the change in ζ induced by the magnetic
perturbation is most different between multiplet components.
In summary, the linear description of asymmetric splittings

arising from magnetic fields appears to hold very well for the
most g-dominated mixed modes. Importantly, we also
demonstrate that rotational coupling effects do not significantly
affect the characteristic magnetic signature varying in 1/ν3 for
g-dominated modes (Bugnet et al. 2021). We therefore insist on
the importance of the accurate selection of sufficiently g-
dominated mixed modes in the search for magnetic signatures
inside red giants.
However, for the near-resonance multiplets (in the p-

dominated mode regions), accounting for mode coupling
yields deviations from this linear description that are potentially
substantially larger than the intrinsic values associated with
pure rotation. These ultimately are a consequence of interac-
tions between rotational splitting, mode coupling, and the
magnetic perturbation near p-dominated modes, which are not
immediately apparent when these phenomena are examined in
isolation. While the first-order expression may suffice for a
rough estimate of the field strength, detailed characterization on
a multiplet-by-multiplet basis will require both rotation and the
magnetic field to be modeled simultaneously; this is known

Figure 10. Magnetic asymmetries induced on the mixed-mode dipolar multiplets for Model 1 when considering a field of amplitude 1MG, as done in Bugnet et al.
(2021). Blue line and points indicate the magnetic perturbation computed on mixed-mode frequencies in the presence of mode coupling, and the orange circle shows
the result when mode coupling is not taken into account. The locations of the π-modes are marked out with the vertical dashed lines in both panels. (a) Comparison of
multiplet asymmetries computed with only the first-order expressions, vs. those emerging from the full mode-coupling calculations. (b) Differences in ζ between
modes with and without accounting for the magnetic field perturbation—these differences are ignored in the first-order construction.
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already to be necessary when treating other aspects of the
interaction between rotation and magnetism (e.g., Loi 2021).

Finally, we note that the morphology of this behavior is
highly dependent on the strength of the magnetic field. We
show in Figure 11 the asymmetry parameters obtained using
the same magnetic configuration, but with the field strength
scaled down to 0.3MG. The size of the associated frequency
perturbation scales with B2, so this results in asymmetry
parameters on the g-dominated multiplets that are an order of
magnitude smaller than in Figure 10. However, the near-
resonance multiplets exhibit deviations from this smooth curve
of the kind seen in Figure 6(a).

3.4. Evolutionary Considerations

We have now derived expressions, Equations (44)–(46), to
estimate both the resonant asymmetry in the rotational splitting
as well as the systematic error in the true rotational width from
that given by the first-order expression, Equation (3). In order
to illustrate how these may change over the course of stellar
evolution, we must additionally specify how Ωenv and Wcore
evolve over time in a reasonably realistic fashion. For this
purpose, we construct evolutionary models including rotation
using the angular momentum transport prescription of Fuller
et al. (2019). As in that work, we choose initial conditions of
solid-body rotation on the zero-age main sequence. The central
result of that work is that core rotation rates during first ascent
up the red giant branch are significantly more sensitive to an
angular momentum transport efficiency parameter α than to the
initial rotational period. Accordingly, we use
Prot,ZAMS= 2 days, as in that work, for a series of evolutionary
tracks with initial mass going from 1.4 to 2.0Me. In a
concession to verisimilitude, we set Prot,ZAMS= 20 days for a
further evolutionary track with initial mass 1.2Me, and
Prot,ZAMS= 30 days for one at 1.0Me, because the mechanism
of Fuller et al. (2019) does not include main-sequence magnetic
braking.

For post-main-sequence mixed-mode oscillators, we relate
their rotational profiles to the two-zone model of differential
rotation by evaluating averaged core and envelope rotation

rates as
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using the WKB expressions for g- and p-mode wavenumbers,
respectively. We insert these into Equations (44)–(46), and
show the evolution of these estimators, as evaluated at nmax, in
Figure 12. For comparison with earlier works (Gehan et al.
2018; Bugnet et al. 2021), we display them as functions of

n n= D DP1
2

1, the number of dipole g-modes per dipole
p-mode.
Specifically, Figure 12(a) shows the systematic splitting

asymmetry induced from near-degeneracy effects. Of particular
concern is the fact that these asymmetries have been proposed
for use as diagnostic measurements of magnetic signatures in
evolved stellar cores (e.g., Bugnet et al. 2021). For comparison,
we also mark out with the blue, gray, and green zones the range
of dipole-mode asymmetries anticipated to arise from such
magnetic effects described in that work, and neglecting the
effects of mode coupling, with respective field strengths of 1
MG, 0.3 MG, and 0.1 MG at Model 1. These regions are
bounded from above by the linear asymmetries from g-modes
(evaluated using the dipole γ-mode kernels nearest to nmax).
The field strength is scaled with the size of the radiative core, to
conserve the magnetic flux inside the radiative region along the
evolution, but no further dissipating mechanisms are consid-
ered. Roughly speaking, we see that both sources of
asymmetric splitting evolve in roughly the same fashion with
increasing  . As such, isolation of the two effects can only be
effected by selecting either g- or p-dominated multiplets (for
magnetic signatures versus rotational coupling), rather than,
e.g., preferentially selecting more- or less-evolved targets for
observation.
Moreover, the magnetic asymmetries are also known to

decrease with increasing azimuthal degree. Thus, we see also
that the size of the quadrupole-mode intrinsic rotational
asymmetry remains larger than those resulting from magnetic
fields, within the range of evolution and field strengths that we
have considered. This serves as a further reason (in addition to
those provided in Bugnet et al. 2021) to prefer diagnoses of
magnetic fields as made with dipole modes over those made
using quadrupole modes.
In summary, were they not accounted for, these degeneracy-

induced asymmetries in near-resonance multiplets may well
lead to spurious diagnoses of magnetic signatures indicating
magnetic fields much stronger than would actually exist. This
risk would be exacerbated if such measurements were to be
made from quadrupole modes, and is most easily avoided with
observational access to the most g-dominated multiplets.
Figure 12(b) shows the evolution of Equation (46), the

systematic error from the first-order expressions. Generally
speaking, Equations (44)–(46) are proportional to powers of

pn= W DP m 2rot
2 , which (roughly speaking) may be

interpreted as the number of g-modes per rotational splitting
width. As we have seen, when rot is larger than 1, crude
nearest-neighbor identification of rotational multiplets fails, and
measurements of rotational widths require some other, more
sophisticated approach to mode identification. However, these
methods still rely on the first-order expressions (e.g., Mosser
et al. 2012; Gehan et al. 2018), and therefore remain

Figure 11. Same quantities as Figure 10, but with a magnetic field strength of
0.3 MG.
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susceptible to systematic errors from inadequate treatments of
avoided crossings. Measurements made using these techniques
in these existing works lie within the range  301 . We mark
out with dashed lines in Figure 12(b) the nominal statistical
errors of these methods corresponding to their reported
absolute measurement errors in the frequency widths. We
nonetheless find that the systematic error induced into these
methods as a result of ignoring higher-order mode-coupling
effects is potentially much larger than their reported errors,
within the range of 1 in which they have been applied.

4. Prospects for the Inverse Problem

We have shown above that, even in the two-zone model, the
use of the first-order expression, Equation (3), may system-
atically misestimate the true sizes of the splittings associated
with mixed-mode rotational multiplets, given a particular
configuration of core and envelope rotation rates. We stress
that this does not alter our ability to actually measure these
multiplet widths (e.g., J. M. J. Ong & C. Gehan 2022, in
preparation); rather, these systematic errors may interfere with
our interpretation of the measured quantities as being averaged
rotation rates specified by Equation (1). We therefore seek
generalizations of this expression to use for solving the
rotational inverse problem, both in the two-zone model as
well as for more advanced rotational inversion techniques.

4.1. Splittings in the π/γ Basis

The isolated basis sets of π- and γ-modes are an alternative
formulation of describing mixed modes, in lieu of the natural
mixed-mode eigenfunctions. While the wave operator is itself
not diagonal in this basis, its off-diagonal coupling elements
can be easily computed with respect to a stellar model
(e.g., using the construction of OB20). In Section 2.2, we
made the observation that modifying perturbation theory to
explicitly account for near-degeneracy effects would require us
to diagonalize the restriction of the rotation operator to within
each near-degenerate subspace. We have now shown from both
analytic considerations and numerical results that the rotation
matrices in a star exhibiting mixed modes have significant off-
diagonal structure in the natural basis of mixed modes, but are

very well-approximated as being diagonal in the isolated basis
of π- and γ-modes. Correspondingly, we may interpret the π-
and γ-modes to be the natural choice of basis functions through
which rotation lifts the degeneracy on each of these subspaces.
Moreover, we have shown that, for near-degenerate multi-

plets, the linear response of mixed modes to rotation,
Equation (3), must (generally speaking) be extended to include
contributions from off-diagonal matrix elements of the rotation
operator. By contrast, because the rotation matrix is close to
diagonal in the isolated basis of p/g-modes, this linear treatment
remains good there even near degeneracy; any nonlinear
behavior in the mixed modes arises from the coupling between
the two mode cavities, which does not depend on the rotational
configuration of the star. This being the case, we suggest the
use of a basis of isolated p/g-modes for characterizing stellar
rotation in the two-zone model.
While the splittings of these notional pure modes cannot be

directly observed, we propose a procedure by which the mean
core (and potentially envelope) rotation rates may still be
constrained in a least-squares sense. Given a set of pure p- and
g-mode frequencies and the coupling between them, we may
define rotationally split mixed-mode frequencies as the
eigenvalues of the QHEP:
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in block matrix form, where Ωg and Ωp are diagonal matrices
containing the nonrotating g- and p-mode angular frequencies,
and A and D are the coupling coefficients between the π and γ-
mode basis functions. In particular, operating within the π/γ
construction permits us to neglect the off-diagonal entries of
the second matrix in this problem. Supposing that the other
quantities entering into the problem may be adequately
constrained by stellar modeling and/or the m= 0 mixed-mode
frequencies, the rotating mixed-mode frequencies will then
only depend on two additional parameters, which are Ωenv and
Wcore. This gives a generative model for the rotating mode

Figure 12. Systematic asymmetry (a) and relative errors (b) induced into pure rotational splitting from multimode coupling, over the course of post-main-sequence
evolution, for MESA models with angular momentum transport (see text for description). All quantities are evaluated at nmax. Both are shown with respect to 1, the
number of dipole g-modes per p-mode. Colors show different stellar masses, with different initial conditions (see text for complete description). The shaded regions in
(a) show upper limits on the magnetic asymmetry in pure g-mode multiplets in the presence of a fossil magnetic field. We show these limits with respective field
strengths of 1 MG (blue zone), 0.3 MG (gray zone), and 0.1 MG (green zone) at Model 1 ( ~ 5). (b) shows the relative statistical error associated with an absolute
measurement uncertainty of 10 nHz (as in Gehan et al. 2018).
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frequencies, such that the parameters Ωenv and Wcore may be
constrained from the data in the usual fashion (e.g., by
χ2-minimization/likelihood maximization).

4.2. Beyond Two-zone Differential Rotation

More generally, existing analysis beyond the two-zone
model of radial differential rotation, via rotational inversion
techniques (as employed in, e.g., Eggenberger et al. 2019;
Ahlborn et al. 2020; Fellay et al. 2021), rely on discretizations
of integral kernel expressions of the form of Equation (1)—i.e.,
solutions to Fredholm equations of the first kind (Hansen 1992)
—with no cross terms between modes; they are therefore valid
only in the same regime as the first-order expression
Equation (3), where the rotational asymmetry arising from
avoided crossings may be neglected. Accordingly, their direct
application to where these avoided crossings cannot be
neglected, and in particular to red giants, may not be correct.

Were rotational inversions to be performed in the mixed-
mode basis, our discussion of Figures 3 and 4 moreover implies
that we must also include the off-diagonal rotation matrix
elements in the inversion problem in addition to the rotational
widths, or else we would lose information about the rotational
configuration in the presence of multiplet asymmetry—they,
too, depend on the rotational profile. However, we note that
almost no previous attempts at rotational characterization have
explicitly measured these off-diagonal matrix elements,
let alone used them in the inversion procedure. Aside
from Dh17, the only observational efforts to account for
asymmetric splittings have been based on the asymptotic
construction, which we have shown in Section 2 not to yield
correct values for these off-diagonal elements even in the two-
zone model of differential rotation, in any case. These
difficulties are further compounded by the fact that, in the
regime where second- and higher-order effects in the rotational
splitting become significant, the dependence of the sensitivity
kernels themselves on the rotation rate can also no longer be
ignored, rendering the linear inversion construction itself
potentially questionable.

Again, we propose that these inversions be carried out in the
isolated basis of π- and γ-modes instead. As we have discussed
previously, a linear treatment of rotation in the basis of these
isolated modes remains valid even where it does not for the
associated near-degenerate mixed modes. That the off-diagonal
matrix elements αij and Dij must be specified is not a significant
methodological complication, as they do not depend on the
rotational properties of the star. Instead, they can be found
independently of rotation, through matching the observed
m= 0 modes to constrain the structure of the star. The stellar
structure must be constrained well in this fashion in order to
produce a good enough fiducial model for rotational inversions
to be feasible in the first place, so these parameters will already
be available from the fiducial model and do not enter as
unknowns into the rotational inverse problem. Whereas
working in the mixed-mode basis would require both the
diagonal and off-diagonal elements of the rotation matrix to be
specified from a fixed set of modes, by working in the π/γ-
mode basis and approximating the rotation matrix as being
diagonal, we essentially impose a sparsity constraint on the
inferred rotation matrix for free (having already specified the
fiducial structure); the extra information goes into reducing the
statistical uncertainty on the inferred quantities. Finally, the
surface term must be corrected for in deriving the fiducial

structure for inversion kernels; new surface term corrections for
mixed modes operate in the basis of π- and γ-modes in any
case (e.g., Ong et al. 2021a, 2021b), thus simplifying matters
were it to also be used for the inversion procedure.
Our discussion above illuminates how a linear inversion

procedure may be recovered in the basis of π- and γ-modes. In
particular, we may replace the second term in Equation (51)
with a diagonal matrix as 2mωR, and constrain its entries in,
e.g., the usual least-squares fashion. We note that this
procedure remains well-posed: for N dipole-mode multiplets
under consideration, there are N diagonal entries in this matrix
R, but 2N rotationally split sectoral multiplet components
against which they are to be constrained. These diagonal matrix
elements then specify the independent variables δωrot of
integral equations of the form of Equation (1), but with the
relevant integral kernels being associated with the underlying
isolated basis of π- and γ-modes, rather than the mixed modes
directly.
We illustrate the differences between these kinds of integral

kernels in Figure 13, in which we plot the cumulative integral

ò= ¢ ¢( ) ( )I r K r rd
r

0
associated with each integral kernel K, as

computed with respect to Model 1 using Equation (9); the
results for Model 2 are qualitatively very similar. In
Figure 13(a), we show these cumulative integrals with respect
to the usual basis set of normal modes, as is typically done. As
a consequence of mode mixing, all of these modes are to some
extent sensitive to differential rotation in both the compact
radiative core and the diffuse convective envelope. The most g-
dominated mixed modes, with β∼ 1/2⟺ζ∼ 1, are minimally
sensitive to the envelope, while in principle a strictly p-
dominated mixed mode with β∼ 1⟺ζ∼ 0 would be mini-
mally sensitive to the core. In these red giants, however, the
configuration of the mode cavities is such that there is always at
least one dipole g-mode close to resonance with every dipole p-
mode, and so no such nearly pure p-dominated mixed modes
can exist.
However, the procedure we have elucidated above permits

us to operate with respect to notional rotational splittings
associated separately with π- and γ-mode basis functions,
which have their own rotational kernels in lieu of those
computed from the mixed modes. In Figure 13(b), we show the
cumulative integrals of kernels derived from the π-mode
eigenfunctions. Unlike those of the mixed modes, these kernel
functions are entirely insensitive to the core, as the π-modes do
not propagate in the interior radiative cavity if it lies entirely
within the inner turning point set by the dipolar Lamb
frequency. Likewise, in Figure 13(c) we show the same
quantities for rotational kernels derived from γ-mode eigen-
functions. Here, we see that these integrals are flat (and
therefore the localization kernels vanish) outside of the
boundary of the radiative core at∼ r= 10−2R.
As such, if rotational splittings can be individually assigned

to π- and γ-modes, e.g., using the least-squares procedure that
we have described above, then rotational inversion may be
performed with respect to sets of basis kernel functions that
have some desirable localization properties: constraints on
differential rotation may be localized to either entirely within
the convective envelope or the radiative core. This stands in
contrast to the use of mixed-mode kernels, such as are currently
used for rotational inversions: the use of these isolated kernels
may assist in alleviating shortcomings of existing techniques.
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For example, in the case of envelope rotation, the
dependence of essentially all mixed-mode kernels on the core
rotation rate renders the problem of localizing rotational
measurements to the envelope to be very poorly numerically
conditioned (e.g., Deheuvels et al. 2012, 2014; Ahlborn et al.
2020). Even the most recent advances in technique (Ahlborn
et al. 2022) produce at most a single, maximally core-
insensitive rotation kernel from a given set of modes,
precluding the localization of differential rotation in particular.
These numerical difficulties may be circumvented by the use of
π-mode kernels, which are already insensitive to the core.
Moreover, our numerical construction recovers exactly as many
π-mode kernels as there are p-dominated mixed modes, thereby
maximizing the use of the available information. In the case of
core rotation, Fellay et al. (2021) assert to have constrained the
shape of radial differential rotation localized to near the
boundary of the radiative core—in tension with the claim made
in Wilson et al. (2021) that no meaningful constraints of this
kind are possible. The use of γ-mode kernels here may refine
these arguments and assist in resolving this tension, by
eliminating any potential interference owing to envelope
rotation.

We note that some of these studies of both core and envelope
rotation have been performed on subgiants, with low n( )1 max ,
where nominally the first-order expressions remain valid, per
Section 3. While this means that the use of isolated π/γ kernels
here is not mandatory, our discussion here suggests that it

might nonetheless be advantageous compared to conventional
methods. Moreover, we must also note that these attempts at
localizing rotational measurements have so far been effectively
restricted to the two-zone model of radial differential rotation (
i.e., attempting to decouple the core from the envelope), as
generalizations to this have thus far not been considered
feasible, owing to the abovementioned methodological diffi-
culties (see Ahlborn et al. 2022; in particular their Appendix
D). Having decoupled the two mode cavities, we are now at
least in principle equipped to explore prospects for estimating
rotation rates and gradients at specific target locations, as
ordinarily done in helioseismology (e.g., Pijpers & Thomp-
son 1994). We defer a more detailed examination of the
localization properties of π/γ-mode kernels to a later work.

5. Conclusion

Existing techniques for internal rotational characterization of
evolved stars require the rotation operator to be effectively
diagonal with respect to the standard functional basis of normal
modes—or equivalently, in the two-zone model of radial
differential rotation, that the observed multiplet splitting for
any given mixed mode be a direct linear combination of
contributions from the core and envelope. However, this
linearity assumption is known not to hold for mixed modes
near resonance in evolved subgiant stars, as a result of avoided
crossings between the underlying p- and g-modes occurring at

Figure 13. Cumulative integrals of different families of rotational inversion kernels associated with dipole modes, all in the same evolved stellar model. (a) Standard
inversion kernels computed using Equation (9) with respect to mixed-mode eigenfunctions, as typically used in the literature. These exhibit sensitivity to both the
radiative core and to the convective exterior, to differing extents depending on the mixing fraction ζ of the modes under consideration. (b) Rotational kernels from π-
mode eigenfunctions. Because dipole π-modes have an interior turning point at nmax exterior to the radiative core, these inversion kernels are essentially insensitive to
the core, unlike the mixed-mode kernels. (c) Rotational kernels from γ-mode eigenfunctions. The localization of these kernel functions is such that they decay
exponentially outside of the compact radiative core.
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different ages for different multiplet components (Deheuvels
et al. 2017). While this result has raised questions regarding the
correctness of existing rotational characterizations made using
this linearity assumption, the manner in which said assumption
might break down over the course of stellar evolution has not
previously been investigated in detail.

A fundamental limitation of earlier investigation of this
phenomenon was the restricted development of the analytic
theory to cases where avoided crossings in near-degenerate
mixed modes could be treated in isolation. Previous studies
have been limited to the case of p- and g-modes interacting in
isolated pairs in subgiants, rather than long-range many-to-one
mode coupling of the kind potentially seen in red giants. In this
work, we operate with respect to a different set of basis
functions than the usual normal modes of oscillation—in
particular, we use the π/γ decomposition of Ong & Basu
(2020). By doing so, we are able to not only demonstrate that a
breakdown of linearity does indeed occur in the regime of
dense-g–sparse-p-mode mixing in evolved red giants, but also
examine the detailed dynamics of how this occurs. Our linear-
algebraic treatment yields rich rotationally modulated families
of avoided crossings (e.g., Figure 5), which are qualitatively
consistent with those seen to emerge from nonperturbative
rotating pulsation calculations (Ouazzani et al. 2013). A linear
treatment of rotation remains applicable in the decoupled basis
of isolated p- and g-modes even when it does not for the mixed
modes. The use of these decoupled basis functions also
illuminates intrinsic contradictions in the most commonly used
alternative approach—that of the asymptotic mode-bumping
function ζ—either when relaxing the requirement that Ωenv= 0,
or more generally when leaving the two-zone model of radial
differential rotation.

From perturbation analysis of the associated matrix eigen-
value problem, we derive analytic estimators for both the
asymmetry and systematic error in the rotational splitting
owing to near-degeneracy effects, which, in conjunction with
stellar modeling under some coarse assumptions about angular
momentum transport in evolved stars, permit us to roughly
constrain the regime of evolution in which the linear
expressions hold well. In particular, we find that the direct
interpretation of existing measurements of dipole-mode rota-
tional splitting as core rotation rates becomes increasingly
questionable for n( )  101 max , and that in such cases the
rotational asymmetry induced by mode coupling also becomes
significant. This is well within the limits of evolutionary states
in the present observational sample of rotating red giants for
which measurements of rotation rates have been made. In this
regime, these near-degeneracy effects can also be shown to
dominate the intrinsic asymmetry and systematic error arising
from higher-order effects of rotation, such as centrifugal forces
and structural deformation. We have moreover briefly exam-
ined how these near-degeneracy effects interact with the
presence of internal magnetic fields that produce frequency
shifts that also depend on the azimuthal order m. We conclude
that, while magnetic field effects largely dominate the
asymmetry of g-dominated multiplets, magnetic and mode-
coupling asymmetries might have similar amplitude near the
nominal p-mode.

Finally, we have described prescriptions for how one may
infer purely symmetric rotational splittings given potentially
asymmetric observed multiplets, using the fact that the rotation
matrix remains approximately diagonal in the isolated basis of

π- and γ-modes for such stars. As a further benefit, existing
descriptions of radial differential rotation beyond the two-zone
core-envelope model may also continue to be applied in this
basis without loss of correctness. We further demonstrate that
the use of isolated π/γ rotational kernels may be desirable even
where the linearity assumption holds, owing to differences in
their localization properties compared to rotational kernels
produced directly from mixed-mode eigenfunctions.
These near-resonance effects have traditionally been avoided

altogether by attempting to restrict analysis to the most g-
dominated mixed-mode multiplets. However, this may not
always be feasible. The most g-dominated dipole mixed modes
occur at frequencies comparable to those of the intervening
radial p-modes and quadrupole π-modes; in any case, the
amplitudes of mixed modes scale with how much p-like
character they possess. This makes dealing with near-resonance
phenomena unavoidable to some extent, as pure g-modes
would be essentially unobservable otherwise. Ongoing efforts
to manage these effects have relied on an asymptotic
construction for the mode-mixing function ζ, as we have
described above. In the next paper in this series (J. M. J. Ong &
C. Gehan 2022, in preparation), we will examine the robustness
of this asymptotic construction and reconcile it with the
algebraic prescription that we have used in this work.
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